Main Ideas in Class Today

You should be able to:

- Distinguish between Elastic and

Inelastic Collisions

- Solve Collisions in $1 \& 2$ Dimensions Practice: $6.31,6.33,6.35,6.43,6.45$,

$$
6.47,6.49,6.51,6.53,6.63,6.65,6.67
$$

Elastic and Inelastic Collisions

- Inelastic collisions: mechanical energy (KE+PE) is not conserved $\quad W_{N C}=\Delta \mathrm{PE}+\Delta \mathrm{KE}$
- Initial mechanical energy \neq mechanical energy after collision
- Energy lost in the form of heat (dissipative forces)
- Special case: Perfectly inelastic, objects stick
- Elastic collisions: mechanical energy is conserved
- In all real cases, some energy is lost to heat. In many cases (eg billiard balls), however, this amount is so small that it makes more sense to ignore this loss.

Elastic and Inelastic Collisions

$$
(1) \xrightarrow{m_{1} \mathbf{v}_{1}}
$$

For both elastic and inelastic collisions linear momentum is conserved (unlike energy)

$$
m_{1} \vec{v}_{1 i}+m_{2} \vec{v}_{2 i}=m_{1} \vec{v}_{1 f}+m_{2} \vec{v}_{2 f}
$$

- Only for elastic collisions, mechanical energy (KE+PE) of $m_{1} \vec{v}_{1 f}$
Final (f') $\xrightarrow[x]{ }$

Book derives (does not $m_{2} \vec{v}_{2 f}$ the system is also conserved.

- $\Delta \mathrm{y}=0$, then $\mathrm{PE}_{\mathrm{i}}=\mathrm{PE}_{\mathrm{f}}$ and

$$
K E_{o 1}+K E_{o 2}=K E_{1 f}+K E_{2 f}
$$

$$
\text { depend on mass! } \square\left(\vec{v}_{1}-\vec{v}_{2}\right)_{\text {initial }}=-\left(\vec{v}_{1}-\vec{v}_{2}\right)_{\text {final }}
$$

These v's are vectors, so can break into x and y components

A compact car and a large truck collide head on and stick together. Which vehicle undergoes the larger magnitude of acceleration during the collision?
A. car
B. truck

C. Both experience the same acceleration. D. Can't tell without knowing the initial and final velocities.

Suppose that a $2000.0-\mathrm{kg}$ car, initially at rest, is struck head on by a $36,000.0-\mathrm{kg}$ semitruck moving at $20.0 \mathrm{~m} / \mathrm{s}$. Determine the velocity of each of the vehicles after the collision, assuming that the collision is elastic.
(This is not a very good assumption because it would assume they bounce right off of each other instead of crushing the bumpers/car.)

Repeat the previous problem s the cars stick together after the
(perfectly inelastic). (much mc

Assuming you had to pick one, which

 car would you rather be in?(assume you want to minimize your injuries)
A) The car during the elastic collision
B) The car during the inelastic collision
C) Doesn't matter, experience same force either way

How to Redesign The Body to Withstand a High Speed Car Crash

https://www.thesun.co.uk/news/1483631/graham-sculpture-shows-human-vulnerability-in-crashes-to-promote-road-safety/ Skull like a helmet

Think fast! You've just driven around a curve in a narrow, one-way street when you notice a car identical to yours coming straight toward you at the same speed. You have only 2 options: hitting the other car head on or swerving into a sturdy concrete wall, also head on. What should you decide to do in order to minimize your injury (and impulse)? (Assume no time to stop)
A. hit the other car.
B. hit the wall.

C. hit either one-it makes no difference to you.
D. consult your lecture notes (not correct, fyi)

Let's Experiment

A similar idea:

- Fist bump a friend or fist bump a flat surface
- In order to compare, bump at same speed Why is this the case?
What if the car is going a different speed? Maybe at rest? What if a truck (same speed)?

At your own risk

Collisions in Two Dimensions

- Linear momentum of an isolated system is always conserved
- In two dimensions, components of vectors
are conserved

$$
\vec{p}_{i, \text { system }}=\vec{p}_{f, \text { system }}
$$

means

$$
\begin{aligned}
& p_{1 o x}+p_{2 o x}=p_{1 x}^{\prime}+p_{2 x}^{\prime} \\
& p_{1 o y}+p_{2 o y}=p_{1 y}^{\prime}+p_{2 y}^{\prime}
\end{aligned}
$$

If collision is elastic, then we also have

$$
\left(\vec{v}_{1}-\vec{v}_{2}\right)_{\text {initial }}=-\left(\vec{v}_{1}-\vec{v}_{2}\right)_{\text {final }}
$$

Car Accident Example

An eastward car strikes a nort at an intersection, and the two unit. A property owner on the the intersection claims that his down in the collision. Should damages by the insurance con A. Yes, seems possible B. No, it's impossible
 Let the eastward car have a mass of 1250 kg and a speed of $16 \mathrm{~m} / \mathrm{s}$ and the northward car a mass of 1100 kg and a speed of $21 \mathrm{~m} / \mathrm{s}$. Find the velocity after the collision.

An astronaut in her space suit has a total mass of $m_{1}=87$ kg , including her oxygen tank. Her tether line loses its attachment to her spacecraft and she is too far to grab on! Initially at rest with respect to her spacecraft, she throws her oxygen tank of mass $m_{2}=12.0-\mathrm{kg}$ away from her spacecraft with a speed $v=8.00 \mathrm{~m} / \mathrm{s}$ to propel herself back toward the spacecraft.

Determine the maximum distance she can be from the craft and still return within 2.00 min (the amount of time the air in her helmet remains breathable).

THERE ARE 2 KNDS OF PCOPLE is IHE worgep
THOSE MHO HANE A PLAN FOR MHEN
ZOMBLES TAK ONEH THE PARXH AN THOSE WHO DNNI
We CALL THOSE LAST PCOPLE DNWER

Block A has mass 1.00 kg and block B has mass 3.00 kg . The blocks collide and stick together on a level, frictionless surface. After the collision, the kinetic energy (KE) of block A is
A. $1 / 9$ the KE of block B.
B. $1 / 3$ the KE of block B.

$$
\mathbf{A} \quad \mathbf{B}
$$

C. 3 times the KE of block B.
D. 9 times the KE of block B.
E. the same as the KE of block B.

Block A has mass 1.00 kg and block B has mass 3.00 kg . The blocks collide and stick together on a level, frictionless surface. After the collision, the kinetic energy (KE) of block A is
A. $1 / 9$ the KE of block B.
B. 1/3 the KE of block B.

$$
\mathbf{A} \quad \mathbf{B}
$$

C. 3 times the KE of block B.
D. 9 times the KE of block B.
E. the same as the KE of block B.

